
AD-A239 298 "P-_ I

NASA Contractor Report 187582 .

ICASE Report No. 91-45

ICASE
PERFORMANCE AND FAULT-TOLERANCE OF NEURAL
NETWORKS FOR OPTIMIZATION

Peter W. Protzel

Daniel L. Palumbo
Michael K. Arras '"

Contract No. NAS1-18605
June 1991

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

ROM 91-07010
National Aeronautics and UiIIlUII
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

~91 " no'" " • ' s ."--. .'

l~i

Performance and Fault-Tolerance of
Neural Networks for Optimization*

Peter W. Protzel
Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665
Electronic-Mail Address: protzel@icase.edu

Daniel L. Palumbo

System Validation Methods Branch
Mail Stop 130, NASA Langley Research Center, Hampton, VA 23665

Michael K. Arras
Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665

b-stract CIL-

One of the key benefits of fu h.dwarey ,ple)ntations of certain ficai Neural
Networks (ANNs) is their apparen 'built-in'fault'tolerance, which make thewpotentiO
candidates for critical tasks with hi h reliability requirements. This pape inveitigates the
fault-tolerance characteristics df time continuous, recurrent ANNs that c be used to solve
optimization problems. The perform ce of these networks is first illus, ated by using ell-
known model problems like the TraveIng Salesman Problem and theAssignment Prgblem.
The ANNs are then subjected to up to 3 simultaneous "stuck-at-1 or "stuck-at-0" faults
for network sizes of up to 900 "neurons." The effect of these faults on the performance is
demonstrated and the cause for the observed fault-tolerance is discussed. An application is
presented in which a network performs a critical task for a realftime distributed processing
system by generating new task allocations during the reconfigpration of the system. The
performance degradation of the ANN under the presence of fa4lts is investigated by large-
scale simulations and the potential benefits of delegating a critical task to a fault-tolerant
network are discussed.

* This research was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the first and third authors were in residence at ICASE, NASA Langley Research
Center, Hampton, VA 23665.

1. Introduction
One of the most intriguing characteristics of biological neural networks is their extreme

robustness with the ability to function even after sevete damage. It has been shown that
Artificial Neural Networks (ANNs) also exhibit some degree of "fault-tolerance," but in
most cases the work did not explicitly focus on the fault-tolerance, which was demonstrated
only as a side-effect [1, 20, 9, 13]. Fault-Tolerance is a qualitative, general term defined
as the ability of a system to perform its function according to the specification in spite of
the presence of faults in its subsystems. This definition is very unspecific and a system that
is said to be fault-tolerant does not necessarily tolerate any number of faults of any kind
in any of its subsystems. A specific way to quantify the fault-tolerance is to determine the
performance degradation in the presence of certain faults in certain subsystems, given that
some measure of performance exists.

Only relatively few studies in the literature are specifically concerned with the fault-
tolerance of ANNs. Furthermore, the results are difficult to generalize because of the very
different models and objectives. For example, Hinton and Shallice (1989) [10] "injected"
faults into a backpropagation network trained to perform a particular linguistic task. They
showed that the performance degradation of the network bears a qualitative resemblance
to the degraded ability of neurological patients with a specific brain disorder. Petsche
and Dickinson (1990) [171 used a special network architecture to investigate a self-repair
mechanism that automatically activates spare nodes (neurons) if one of the nodes is "dead,"
i.e. permanently inactive ("stuck-at-0").

In this paper, we will investigate the time-continuous, recurrent ANN that was proposed
by Hopfield in 1984 [11] to solve certain optimization problems. In the following, we will
adopt the term "optimization networks" for these ANNs, which was coined by Tank and
Hopfield [24]. Although optimization networks were initially applied to classical problems
like the Traveling Salesman Problem, we are more interested in potential applications in real-
time processing and control systems. For example, an optimization network implemented
in analog hardware could perform a real-time scheduling or control task as a component
of a hybrid system. If this is a critical task with high reliability requirements, then the
allegedly "built-in" fault-tolerance of the neural network becomes a key factor. With such
applications in mind, we will investigate the fault-tolerance of optimization networks and
quantify the performance degradation in simulated "fault-injection" experiments. A broader
goal is to gain insight into the principal character of the fault-tolerance of these networks
and to explore the underlying cause.

The following two Sections of this paper contain a brief introduction to optimization
networks and explain the principle of operation for two model problems, the Assignment
Problem (AP) and the Traveling Salesman Problem (TSP). Section 4 introduces a perfor-
mance measure that allows a meaningful assessment of how well the network actually solves

the AP and the TSP. Such a performance measure is a prerequisite for quantifying the per-
formance degradation in the presence of simulated faults, which are "injected" into the
network. Section 5 presents these results for the AP and TSP used again as model problems
and discusses the cause and the effect of the observed fault-tolerance. Finally, Section 6
describes an application in which an optimization network is used for the real-time task
allocation in a fault-tolerant, distributed processing system. The network is a critical com-
ponent in this application and its fault-tolerance is an essential requirement for the operation
of the system. The conclusion in Section 7 summarizes the main results and discusses the
prospects of optimization networks for different application areas.

2. Optimization Networks
Figure .1 shows an optimization network in form of an electrical circuit model [12]

with n interconnected amplifier units ("neurons") as the active circuit elements. The model
allows resistive feedback from any output Vj to any input ui with a resistor value Rij or
a conductance Tij=l/Rij, respectively. The current Ii can be used to provide an external
input to the network. The nonlinear, sigmoidal transfer function that determines the relation
between an input ui and an output Vi is given by

2 +tanh (u 1+exp(-4A (ui-u,))

(1)

1 dY,,
2u 0 dui

The parameter A denotes the slope of the transfer function at the inflection point ui=u, and
constitutes the maximum gain of the amplifier. The offset u, is sometimes explicitly used
as an additional parameter [4], but can be incorporated into the current Ii, which has also
the effect of shifting the transfer function horizontally.

The feedback connections are described by positive and negative values for the weight
Tij of the connection between the output of unit j and the input of i. In an electronic circuit
realization, Tij=l/Rij can only be positive, and negative feedback requires the use of an
additional output -Vi for unit i ranging from 0 to -1. The intrinsic delay exhibited by
any physical amplifier is modeled by an input resistance ri and capacitance Ci. These are
drawn as external components in Figure 1, so that the actual amplifier can be described as
an ideal component with no delay.1 A circuit analysis of the network in Figure 1 yields the
"equations of motion"

I This is, however, an idealized model of a practical amplifier according to Smith and Portmann (1989) (21].
More realistic models might lead to instability of the system. (cp. also Marcus and Westervelt (1989) [15])

2

In

r C

13T T3 T22 T21

T13 -33V

1n~ T3 T2 Ti

Figure 1. Circuit diagram of an optimization network according to Hopfield (1984) [11]. Note
that negative feedback can be realized by connecting positive conductances
Tij to the negative output -Vi of a unit (not shown in this figure).

Cii , ui +
dt=--+ Z TiV + Ii (2)

j=1

that describe the time-evolution of the dynamical system. Ri represents the parallel combina-

tion of the input resistance ri and all the weights Tij=1/Rij connected to unit i according to

1 1 (3)

j=1

The product of Ri and Ci is often referred to as the time-constant -i of one particular unit i.
An identical time-constant for each unit i would require Ci=C and Ri=R for all i. The latter
condition might be difficult to achieve in practice if the parallel combination of the weights
in (3) results in different values for each unit i. In this case, each individual value for ri
would have to be chosen in a way that compensates for these variations. It is also important
to note that the time-constant ri describes the convergence of the input voltage ui of unit
i. Because of the potentially very high gain of the transfer function, the output Vi might
saturate very quickly. Thus, even if the input ui is still far from reaching its equilibrium
point, the output Vi might already be saturated, and by observing only Vi it might appear
as if the circuit had converged in merely a fraction of "its" time-constant ri.

Hopfield (1984) proved the stability of the nonlinear dynamical system (2) for symmetric
connections (Tij=Tji). By introducing a Liapunov function [11], he showed that i the high-

3

gain limit (A -+ oo) the stable states of the system correspond to the local minima of the
quantity

S Ti3 VV - iii (4)

=l1~ i=1

which Hopfield refers to as the "computational energy" of the system. This means that the
dynamical system moves from an initial point in state space in a direction that decreases its
energy (4) and comes to a stop at one of the many local minima of the energy function.

It has been shown [7] that the Liapunov function (4) for the system (2) is a special case
of a more complex Liapunov function introduced by Cohen and Grossberg in 1983 [5], so
that Equation (4) might not be considered as a new result in itself. Nevertheless, this does
not diminish Hopfield and Tank's main contribution, which can be seen as their method of
associating the equilibrium states of the network with the (local) solutions of an abstract
optimization problem like the TSP. This method is briefly reviewed in the next section.

3. Solving Optimization Problems: Principle of Operation
The basic idea behind the operation of optimization networks can be stated as follows:

If it is possible to associate the solutions of a particular optimization problem with the local
minima of the energy function (4), then the network "solves" the problem automatically by
converging from an initial state to a local minimum, which in turn corresponds to a (local)
solution of the problem. This association requires a suitable problem representation, that is,
an encoding of the problem by using the state variables Vi of the network. For example,
the output Vi of a unit ranging from 0 to 1 can be used to represent a certain hypothesis
that is true for Vi 1= and false for V=--0. Different hypotheses can be encoded by different
units and the hypotheses might have to satisfy certain constraints. If the final state of the
network is supposed to represent a particular solution, it is usually required that the outputs
Vi eventually converge to either 0 or 1 in order to obtain a decision. In this sense, the process
of convergence with intermediate values O<Vi<l could be interpreted as the simultaneous
consideration of multiple, competing hypotheses by the network before it settles into a final
state [23]. In the following, we will demonstrate the principle of operation for two model
problems, the Assignment Problem (AP) and the Traveling Salesman Problem (TSP).

3.1 The Assignment Problem

The AP used for this example is a simple version, sometimes also called list matching
problem, with the following specification. Given two lists of elements and a cost value for
the pairing of any two elements from these lists, the problem is to find the particular one-
to-one assignment or match between the elements of the two lists that results in an overall
minimum cost. In order to distinguish clearly between the two lists, we use capital letters to

4

X 1 2 3 4 5 6 7 X 1 2 3 4 5 6 7
1 A /68 68 93 38 52 83 4 A 0 0 00 0 01

B 6 5367 1 38 7 42 B 100
C 68 59938453 1065 i C 0 0 0 0 0 1 0
D 42 70 91 76 26 5 73 D 0 0 0 0 1 0 0
E 33637599372598 E 0 1 0 0 0 0 0
F 727565 8 638827 F 0 0 0 1 0 0 0
G 44764824283617 G 0 0 1 0 0 0 0

Cost-Matrix Optimization Network Output-Matrix

Figure 2. Exemplary cost-matrix for a 7x7 Assignment Problem and corresponding output
matrix generated by the neural network. Here, the solution encoded by the
output-matrix is optimal with an overall cost of c=165.

describe the elements of one list (i.e. X=A, B, C, etc.) and enumerate the elements of the
other list (i.e. i=l, 2, 3, etc.). Additionally, we assume that the two lists contain the same
number of elements n. A one-to-one assignment means that each element of X has to be
assigned to exactly one element of i. The cost Pxi for every possible assignment or pairing
between X and i is given for each problem instance. This generic problem description has
many practical applications, for example, the assignment of jobs i to processors X in a
multiprocessor system by minimizing the cost of the communication overhead.

The AP as specified above can be represented by a two-dimensional, quadratic matrix of
units, whose outputs are denoted by Vxi. Thus, we can define Vxi as a "decision"-variable,
with Vxi=l meaning that the element X should be assigned to the element i, and VXi=0
meaning that the pairing between X and i should not be made. This way, a solution to
the AP can be uniquely encoded by the two-dimensional matrix of the outputs Vxi after
all units converge to 0 or 1. Note that n2 units are required to represent an AP with n
elements per list. The constraints of the one-to-one assignment require that only one unit
in each row and column converges to 1 and that all other units converge to 0. Thus, the
outputs of the network after convergence should produce a permutation matrix with exactly
one unit "on" in each row and column. Figure 2 illustrates this problem representation by
showing the cost-matrix as the input for a particular problem instance and the output of the
network after convergence. In this example, the output-matrix determines the assignment
of elements A to 7, B to 1, C to 6, etc.

For the mapping onto the optimization network, the problem has to be expressed in the

form of a quadratic function with minima representing the solutions. The "energy"-function
2 2

EAP = AZ(B Y:1E~ EVxi - 1 + 2 Vxi-1

X (5)

C EVx(1 -Vx,)+D E EpxVx,
X i X i

5

external current Ixi =A+B-C/2-Dpx i

Slateral
feedback i inhibitory
from a unit connections
to itself within a
Tx,x i=-A-B+C "P1 columnTxi,y i =- B

lateral inhibitory connections within a row Txix j =-A

Figure 3. Schematic architecture of a two-dimensional neural network with the
connectivity required to solve the Assignment Problem.

used by Brandt et al. (1988) [4] is such a function. The first two terms in (5) have minima
if the sum over all outputs equals 1 for each row and each column, respectively. The third
term has minima if all Vxi are either 0 or 1 and, together with the first two terms, it enforces
the constraints. The fourth term in (5) is simply the overall cost of a particular solution given
the constraints are met. Furthermore, it is common to use constant factors A, B, C, and D as
additional parameters in (5). These parameters have the effect of "weighting" the constraints
and the cost-function and allow a fine-tuning of the performance as will be seen later.

The next step in mapping Equation (5) onto an optimization network is the derivation of
the values for the connections and the external inputs. First, we have to extend the notation
of the Liapunov function (4) to two dimensions:

1
E-= - 1 E 1: 1 Txi,yj VxjVyj - Vxilxi (6)

2X i Y j X i

By comparing Equations (6) and (5) it follows after some algebraic transformations that
E=EA, if

Txi,Yj = -Abxy - Bbij + Cbxyi j
C(7

Ixi = A + B - -- Dpx . (7)
2

6

Figure 3 sketches the resulting two-dimensional network architecture as a directed graph.
With the specific values from Equation (7), the equations of motion for the AP become

duXi .i i A VXj - B E Vyi + CVxi
x dt - lx, Y (8)

C+ A + B - - - Dpxj

3.2 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) was the first example chosen by Hopfield and
Tank (1985) [12] to demonstrate how a neural network could be used to solve optimization
problems. The task of the traveling salesman is to visit n cities, once each, in a closed tour
in such a way that the overall length of the tour is minimal. The TSP is a classical, NP-
complete optimization problem [6], for which no algorithm exists that could find a (global)
solution in polynomial time. Hopfield and Tank's TSP example achieved such prominence
because it was one of the first examples of a neural network "solving" a problem that is
intractable for conventional computers. However, as we will discuss later, the TSP was
meant and should be regarded as an example only, and does not suggest that a general
method has been discovered that solves NP-complete optimization problems.

The problem representation for the TSP is similar to the AP and requires a two-
dimensional network with outputs Vxj. The difference is that the first index (X) now
denotes a city, and the second index (i) describes the order in which a city is visited along
the tour. The representation of a problem with n cities requires a quadratic matrix of n2

units whose outputs Vxi should converge to binary values. We define Vxi=I as the decision
that city X should be on the ith position of the tour. Conversely, Vxi--O determines that
city X should not be on the ith position. The requirement of the TSP that each city has to
be visited exactly once can be rephrased such that each city can be in only one position of
the tour and each position can be occupied by only one city. Thus, the constraints are met
if the outputs of the network converge to a permutation matrix with only one "1" in each
row and column. This means that the mathematical expression of the constraints in form of
a quadratic function is identical to the one derived for the Assignment Problem. However,
the problem representation has a 2n-fold degeneracy because there exist n matrices for each
of the two directions of traversal that encode the same tour.

Except for a different cost-function, the energy-function for the TSP is identical to the
AP and can be written as 141

x2
2--s = - Vxi- 1 + 2VXi- 1 + 2 V i (1 -- i)

X X i

+D" Z Z Z dxyVxi (Vyi+l + Vyi-1) (9)
X Y i

The fourth term in (9) represents the cost function, which is simply the length of the overall
tour scaled by the parameter D. The mapping of (9) onto the Liapunov function of the
network results in the following network parameters

Txi,,Y = -Abxy - Bbij + Cbxy bij - Ddxy (bj,i+l + b,,i-)

'Xi =A+B - C
(10)

2

The principal difference between the TSP connectivity in (10) and the AP connectivity in

(7) is that the TSP cost-function is encoded by the connections and not by the external

current. The architecture of the TSP network is identical to the AP network as illustrated

in Figure 3, except that the TSP network has a constant Ixi and the additional connections
Txi,yj=-DdxY(bj, i+l +bj,i-1).

The equations of motion that describe the dynamics of the TSP network are

duxi ux1 Vxj - B E V, + CVxix dt Rxi (

- D 1 dxy (Vi+l + Vyi-) + A + B - 2
Y

Originally, Hopfield and Tank proposed a different energy-function for the TSP, which
uses an alternative formulation to enforce the constraints. Their original TSP energy-function
[12] is

AB
ETSP2 = 2 VXiVx,+ Z VxVy,- + (Z Vxi-n

X i joi i X Y$X "

+ Z i dxyVx, (Vy,,+l + Vyi 1) (12)
X Y i

The mapping of (12) onto the Liapunov function (6) results in the values

Txi,Yj = -A6xy - B6ij + (A + B) xy 6ij - C - DdXy (6j,i+ + j,i-) 13)

Ixi = nC

and in the corresponding equations of motion

CXi AEAVx-B Z Vy,-CZZV ydtR i ji Y jX Y J (14)

- D dXy (Vyi+' + Vy, l) + Cn
Y

8

The main difference between Hopfield and Tank's original formulation (12-14) and the
modification (9-11) is the "global inhibition" term -C in Hopfield and Tank's equation
(13) as well as an external current term that depends on the problem size n. Although
both approaches seem to be equivalent in the sense that both enforce the convergence to
a permutation matrix while using an identical cost-function, their performance turns out to
be considerably different. In trying to recreate Hopfield and Tank's original results, many
people have reported poor results, that is, either the network failed completely to converge
to a valid tour (permutation matrix) or the solution was clearly far from the global optimum
[26, 25, 8]. These problems do not occur when the alternative formulation of the energy
function (9) is used [4]. However, the performance still depends strongly on the parameter
values, on the initial values, and on the cost-function of the underlying city-distribution.

4. Performance Assessment

The performance assessment would not be an issue if the network simply found the
global solution all the time. In fact, this would imply a solution to the NP-completeness
problem. However, the network usually converges to local minima and produces good but
"suboptimal" solutions. Then the question becomes "how good is good?" and the need
for a performance measure arises. One obvious measure of performance is, of course, the
resulting cost-value after convergence, given that the network converged to a valid solution.
For the TSP, this is simply the distance of the tour, and the smaller the distance the better the
network performs. Unfortunately, the performance of a given network varies considerably
for different problem instances (data sets), for different problem sizes, for different network
parameters, and in the case of the TSP, also for different initializations of the network.
This variation impedes a meaningful, general performance assessment if only one or two
example problems are considered, because it is always possible to "fine-tune" the network
parameters for a particular problem instance.

Therefore, it is necessary to generate a representative number of examples that allows a
statistically meaningful statement to be made about the average performance. Furthermore,
some reference frame is needed for the comparison of the network results, because just
the average over the cost-values is generally not sufficient. The simplest reference for a
comparison is the average cost-value of a "random guess," that is, the average or expected
value of the distribution of all possible answers for a particular problem instance. A
performance assessment based on the estimated distribution has led to statements in the
literature that, for example, a solution is approximately among the 108 best out of 4.4x 1030

possible solutions (Hopfield and Tank, 1985 [12]), or that 92% of the solutions are among
the best 0.01% of all solutions (Tagliarini and Page, 1987 [23]). While this gives some
impression of the performance, it can hardly be considered a practical measuaement.

9

solution
frequency

given

result

r+ cost

Copt C Cave

quality
I I I 'I

1.0 q 0.0

Figure 4. Definition of a solution quality q by mapping the absolute values c,
copt, and cave onto a normalized scale.

What is needed is a performance measure that can give an answer to the following

questions:

* What is the effect of a parameter variation or a modification of the energy
function on the performance?

* How good is the solution with respect to the global optimum or the best known
answer?

* How does the performance change with problem size?
* With respect to fault-tolerance, how does the performance degrade under the

presence of (simulated) faults?
* What is the performance difference of two networks solving two different

problems, that is, are there problems that are "easier" for the network to solve?

Our approach to the performance assessment is based on the fact that the distribution of
all possible answers for every instance of an optimization problem can be characterized by
two values, the global optimum (minimum cost) cpt and the average cost value Cave. With
c denoting the cost value of a given result derived by the network, the relation between c,
Copt, and Cave can be used as a performance measure. By mapping those absolute values
onto a normalized scale as illustrated in Figure 4, we define the solution quality q as

Cave - Cq=- (15)
Cave - Copt

Thus, the solution quality has a value q=l if c=copt and q=O if c=cave, with O<q<l for
Cave>C>Copt.

10

Traveling Salesman: Problem Size n (Number of Cities)
Different Approaches 10 20 30 50 100

1.) Original Method of 0.905 0.903 0.851
Hopfield and Tank (0.15) (0.11) (0.02) (0.00)

2.) Modified Method of 0.829 0.816 0.830 0.852 0.902
Brandt et al. (1988) (1.00) (1.00) (1.00) (1.00) (1.00)

3.) Brandt et al. (1988), 0.936 0.926 0.923 0.913 0.927
different parameters (0.98) (0.97) (0.84) (0.58) (0.18)

Table 1. TSP solution quality q and proportion of valid solutions (in parentheses)
for different problem sizes and solution methods.

Obviously, the calculation of q requires the knowledge of the two reference values cpt
and Cave for each problem instance (e.g. for each city distribution of the TSP). Obtaining
values for Cave is usually no problem since it only requires a sufficient number of random
trials. In case of the TSP, for example, a random but valid tour is generated repeatedly and
the resulting tour lengths are averaged to obtain Cave. The fact that we have to know the
global optimum copt appears to be a paradox at first glance and one might ask why we would
use an ANN to solve a problem for which the best possible solution is already known. The
answer is, of course, that we want to test the network by using well-known model problems
and for such a test it is reasonable to compare the results of a new method k.e. ANNs)
to the results of the best existing method. In fact, in almost all cases, where ANNs have
been applied to optimization problems, there are conventional algorithms readily available
to provide values for Copt. For NP-complete optimization problems like the TSP, for which
the global optimum is generally unknown, the best available heuristic method like the Lin-
Kernigham algorithm [14] can be used as a reference. If Copt is not the global optimum
and should it happen that the network generates a better answer, then the event c<copt is
reflected by a solution quality q>l. Conversely, the value for q becomes negative if the
solution of the network is worse than the random average (c>Cave). Thus, the normalized
solution quality is independent of a particular problem instance and of the problem size.

In the following, we will demonstrate the use of the defined solution quality to assess
and compare the performance for the two model problems, the TSP and the AP. In order to
get statistically relevant results for the TSP, we generated a test-set containing 10 different
city distributions for each problem size (n=10, 20, and 30) and 5 different distributions
for n=50 and 100. Each city distribution was generated by placing the cities randomly
on a unit square according to a uniform probability distribution. The values for cave were
obtained by averaging over 105 random trials for each city distribution. The Lin-Kernigham
algorithm [14] was used to generate 5 answers for each city-distribution and tti,. best result

11

was chosen as Copt. Since the network performance varies considerably for different random
initializations, 10 different initializations were used for each city distribution of size 10 to
50, and 5 initializations for n=100. Thus, a single sweep through the test-set requires 375
simulation runs and the value for q was calculated after each run. The average values for q
are shown in Table 1 for different approaches and problem sizes.

There is also the possibility that the network will not converge at all to a valid solution
because it has gotten stuck in a local minimum ("spurious attractor") that does not correspond
to a permutation matrix. Since this event is not reflected by the solution quality, we also
show in Table 1 the proportion of runs with valid solutions. The average value for q
includes only runs that produced valid solutions. In an attempt to recreate Hopfield and
Tank's original results, we performed a run of the test set using their original equations
(12-14) with the parameters A=B=500, C=200, D=500, A=25, and u,--0 as described in
[12]. Furthermore, Hopfield and Tank used an additional constant term for the external
current according to Ixi=C(n+5)=200n+1000, which effectively shifts the transfer function.
They also used the initialization Vxi(t--0)=l/n+6 where 6 is a small random number [12].

The equations of motion (14) were solved by Euler's method with time-steps At between
10- 5 and le . A larger At can cause numerical errors and results that do not reflect the actual
behavior of the system. The first row in Table 1 shows the results of our simulation that
confirm the reported difficulties [26, 8, 4] in using Hopfield and Tank's original equations.
Even for n=10 cities only 15% of the runs converged to a valid solution and since none of the
50-city cases produced a valid answer we did not even attempt to solve a 100-city problem.

Although we experimented extensively with parameter variations, we did not find a
set of parameters that improves the performance significantly. However, it is possible to
"fine-tune" the parameters for one particular city-distribution to obtain quite impressive
results. Unfortunately, the same parameters usually produce invalid or poor results for
other city-distributions. This characteristic has led to some confusion in the literature with
performance claims based on specific examples that were difficult to reproduce and did not
hold in general [26]. This also demonstrates the importance of an average performance
assessment over many examples. Since Hopfield and Tank's original equations (12-14)
are not the only way to express the problem, we tried different modifications [19, 18] and
obtained the best results with the approach published by Brand et al. (1988) [4] that is
described in Section 3.3. By using Brandt's energy equation (9) and his original parameters
A=B=2, C=4, D=I, A=2.5, and us--0.5, we obtained the results shown in the second row
of Table 1. An additional difference of Brandt's approach is an initialization in the center
of the hypercube with Vxi(t=O)=0.5+b and a random variable 6 uniformly distributed in the
range -10-610- . Because of the lower gain and smaller values of the parameters, we
could use the value At=0.1 to solve the equations of motion (11).

As shown in the second row of Table 1, this modified energy function produced
consistently valid tours across the full range of problem sizes. However, the average solution

12

quality was lower than the valid cases of Hopfield and Tank's results. We tried different
parameters for Brandt's energy equations to improve the quality. The results for A=B=5,
C=2, are D=3 are listed in the third row of Table 1. The parameters for the transfer
function and the initialization are the same as in the previous case, except that we used a
At=5 x 10- .We can see that the average quality has indeed been improved, but at the price
of occasional invalid answers whose frequency increases with the problem size. There is a
fundamental tradeoff between obtaining consistently valid (but sometimes poor) answers for
a large number of different problem instances and very good answers for a small number
of instances. One obvious and extreme case of this tradeoff is setting D=0, which cancels
the cost-function and reduces the problem to pure constraint satisfaction. Then we would
always expect valid answers, but with an average quality of q=O. The underlying problem
with the TSP is the quadratic cost-function tha,. maps the problem-specific distance values
multiplied by the parameter D onto the connections, where they are added to the values that
enforce the constraints as in (10) or (13). Qualitatively speaking, large distance values in
an extreme problem case or a large factor D might "override" the connectivity values that
enforce the constraints and thus interfere with the convergence to a valid solution.

This problem does not occur with the Assignment Problem because the energy function
for the AP (5) maps the problem-dependent cost values to the external current (7) and not
to the connection values. This is actually the only difference between the AP- and the
TSP-network, as far as the architecture is concerned, and makes a performance comparison
between the problems especially interesting. As before, we generated a test-set of 10 problem
instances for each size of 10, 20, 30, 50, and 100 elements. The cost values were randomly
generated with a uniform distribution between 0 and 1. The AP as defined here is not an NP-
complete problem and there exist relatively simple and fast algorithms that find the global
solution. We used such a textbook algorithm [22] to obtain values for cpt and generated the
average values cave from 10 random solutions for each problem instance. The first row of
Table 2 shows the simulation results for the parameters originally used by Brandt et al. [4]
with the additional values A=2.5, u,--0.5, At--0.05, and the initialization uxi(t--0)--0. The
other two rows show the effect of parameter modifications and here the values A=25, Us-0,
At=5 x I0 - were used with the same initialization. In contrast to the TSP, no random bias in
the initial values is required for the AP; in fact, the network converges to the same solution
despite some small random noise. This simplifies the performance assessment considerably,
because we now need only one simulation run for each problem instance.

A comparison between Table 1 and 2 reveals a striking difference between the TSP-
and the AP-results. For the AP, none of the runs failed to converge to a valid solution and,
moreover, the solution quality is excellent. For the parameter sets 2.) and 3.) in Table
2, the network actually found the global optimum in most cases or generated an answer
extremely close to it. We can conclude that the "non-interference" of the cost-values with
the connection-values that enforce the constraints is the cause for the enormous performance

13

Assignment Problem: Problem Size n (Number of Elements)

Different Parameters 10 20 30 50 100

0.988 0,960 0.975 0.978 0.987(1,0) (1.0) (1.0) (1.0) (1.0)

1.0 0.999 0.999 0.998 0.998(1.0) (1.0) (1.0) (1.0) (1.0)

3.) A=B=200, C=3, D=50 1.0 0.999 1.0 1.0 0.999
(1.0) (1.0) (1.0) (1 .0) (1.0)

Table 2. AP solution quality q and proportion of valid solutions (in parentheses)
for different problem sizes and parameters.

difference. Thus, the distinction between a quadratic and a linear cost function becomes
an important classification which helps to identify problems that are more suitable to an
ANN-implementation. The demonstrated ability to compare the results of two different
optimization problems proves the versatility of the solution quality as a performance index
and justifies the additional effort needed to obtain values for copt and Cave.

There is another aspect to the comparison between optimization networks and conven-
tional algorithms, which is the time it takes to solve a problem of a particular size. For
example, it takes more than one day of CPU time on a VAX 780 to simulate the neu-
ral network solving a single 100-city problem. This is actually not surprising because the
simulation involves the numerical solution of 104 ODEs for several thousand iterations.
However, the Lin-Kemigham algorithm provides a (usually much better) answer in about 3
minutes. Furthermore, 100 cities are not even considered an "interesting" problem size for
the TSP. Although an analog hardware implementation of the neural network might solve the
same problem in milliseconds, the need for a VLSI chip with 104 Operational Amplifiers to
solve a 100-city TSP is truly questionable. Thus, we do not think that large-scale, classical
or NP-complete optimization problems are suitable applications for optimization networks
other than as examples or model problems. However, there are certain small-scale, special
purpose, real-time control problems that could benefit from the key characteristics of an
ANN hardware implementation: speed, low weight and power consumption, and "built-in"
fault-tolerance. Therefore, our actual objective is not to compete with conventional methods
in solving classical optimization problems, but to investigate the fault-tolerance of the net-
work for special purpose applications. The above performance assessment is a prerequisite
for this investigation.

5. Fault-Tolerance
It is possible to distinguish between two different characteristics, which we might call

14

static fault-tolerance and dynamic fault-tolerance. A system with static fault-tolerance does
not react in any special way to compensate for the effect of internal failures, whereas
a dynamically fault-tolerant system reorganizes its resources to counteract the fault-effects
actively. An example for the latter case is adaptation or retraining after internal faults 11, 201
or the self-repair mechanism proposed by Petsche and Dickinson (1990) [17]. Generally, it
is more difficult to achieve the same degree of robustness with static fault-tolerance because
no repair or reconfiguration is possible. Since optimization networks are "hard-wired" and
do not adapt or learn, they can exhibit only static fault-tolerance. Thus, we will "inject"
simulated faults into the network and observe the performance degradation by using the
defined solution quality for the TSP and the AP. t cudy that is related to our approach
was performed by Belfore and Johnson (1989) [3] who also investigated the effect of faults
in an optimization network that solves the TSP. However, they used only a single 6-city
distribution with single node faults in their simulations, which is insufficient to draw any
statistically meaningful conclusions as we will show below.

According to Figure 1, there are only two different components in a hardware imple-
mentation of an optimization network, the "neuron" or active element in the form of an
operational amplifier and passive interconnections in the form of resistors. In the following,
we will first consider two types of faults of the active elements that correspond to the high-
est failure rate. These are commonly called "stuck-at-l" or "stuck-at-0" faults and occur
if the output of a unit (amplifier) is permanently pulled to the highest potential or to the
lowest (ground) potential, respectively. The fault-locations are randomly selected with one
important exception: we do not allow two stuck-at-i faults to occur within the same row or
column. The reason is that such an event would automatically preclude a valid solution,
since the permutation matrix allows only one "1" in each row and column. In simulating
multiple faults, we study a succession of either stuck-at-1 or stuck-at-0 faults, but not a mix-
ture of both types. We use the same locations for stuck-at-1 and stuck-at-0 faults, in order
to compare the effect of a different fault type. Otherwise it would not be possible to tell
whether different results are caused by the different locations or by the different fault types.
This means that the above exception is also valid for stuck-at-0 faults although two or more
stuck-at-0 faults in the same row or column do not necessarily interfere with a valid solution.

Before we present the results of our large-scale simulations, we want to illustrate the
impact of stuck-at-I faults for two examples. Figure 5 demonstrates the effect of 4 stuck-at-I
faults simultaneously present in a network solving a 10-city TSP. The network parameters
are those that produced the results in the second row of Table 1 and are listed in the previous
Section. For comparison, Figure 5a shows a good but suboptimal solution of length 3.08 for
a fault-free network. The locations of the 4 injected faults are visible after the initialization
in Figure 5b. In Figure 5c it can be seen that the network still converges to a solution;
however, the resulting tour of length 3.77 is clearly worse than in the fault-free case. In
order to understand these results, it is necessary to recall the "meaning" of a fault in this

15

1 2 3 4 5 6 7 8 9 18
A U..........

B
C.

D fl.....

EF

F. .f.

1 23 4 5567 8 918 D C.
A *.********M 0 H. F.

B *EEEESOEONE
C *EEEEME20aMaE
D *u****ESO 0
E EK 0E H EEK0ENKB
F * ME M 0 ESONl

-H EE MEEEEEEEE 0
I EME MEM 0 a A.

J **...E.a.*. a J.

1 2 3 4 5 6 7 8 9 108
AU....

B

C

D

E B.........
F

GE...
H...............N

I..............

Figure 5. Solutioni of a 10-city problem by a network without any faults (a), new initialization of the
network now with 4 stuck-at-I faults (b), and solution under the presence of faults (c). Note that
the two faults in adjacent columns predetermine a link between the cities B and D.

16

a) no faults c = 165 b) 1 stuck-at-i c = 185 c) 2 stuck-at-1 c = 243

68 68 93 38 52 83(' 6868 93 38 52 83 ('4 6868 93 38 52 83 (
(53 67 38742 6 53 67 1 38 42 6 53 67 1 38 42
68 59 93 84 53(1O065 68@ 93 84 53 10 65 68 59 M 84 53 10 65
42 70 91 76@5 73 42 70 91 76(g53 73 42@ 91 76 26 5 73
336@ 75 99 37 25 98 @ 63 75 99 37 25 98 @ 63 75 99 37 25 98
72 75 65()63 88 27 72 75 65(®63 88 27 72 75 65® 63 88 27
44 76 @ 24 28 36 17 44 76@24 28 36 17 44 76 48 24(g 36 17

d) 3 stuck-at-i c = 310 e) 4 stuck-at-I c = 361 f) 5 stuck-at-1 c = 381

68(@ 93 38 52 83 4 68(@"93 38 52 83 4 68 68 93 (52 83 4
653 67 1 38]42 6 53 67 1 38WM42 6 53 67 1 38[142
68 59[F 84 53 10 65 68 5993 84 53 10 65 68 599R 84 53 10 65
42 70 91 76 26 5 7 42 70 91 76 26 5 7 42 70 91 76 26 5
@ 63 75 99 37 25 98 (g63 75 99 37 25 98 33@ 75 99 37 25 98
72 75 65)63 88 27 72 75 65 8 F6388 27 72 75 65 8 6 88 27
44 76 48 24@ 36 17 44 76 48028 36 17 E76 48 24 28 36 17

Figure 6. Effect of up to 5 multiple stuck-at-I faults on a network solving an Assignment
Problem of size n=7. Shown is the cost-matrix with the circled elements
indicating the network solutions (neurons that converged to "1") and the
shaded squares indicating the fault locations. Note that b)-f) are still optimal
solutions under the additional constraints imposed by the faults.

context. Since we interpret the neuron output as a decision about the position of a city
on a tour, a stuck-at-I fault represents such a decision and thereby predetermines a part of
the overall tour. Because of the degeneracy of the TSP problem representation, a single
stuck-at-i fault does not constrain the network at all since the absolute position of a city
does not matter. The effect of two simultaneous faults is immediately obvious if the two
faults occur in adjacent columns. As shown in Figure 5b, such an event predetermines a
link between two cities because the cities are in successive positions on the tour. Figure 5c
shows how this imposed "link" affects the overall tour.

Surprisingly, this predetermination of parts of a tour by the injected faults does not
necessarily lead to a performance degradation. Since the network usually finds a suboptimal
solution in the fault-free case, it is conceivable that a "lucky" combination of fault-locations
leads to a tour that is actually better than one without any faults. While these events
are rare, we could observe occasional improvements under the presence of multiple faults.
Stuck-at-0 faults play a less prominent role because they only preclude a city from being
i, a certain position instead of predetermining it. Thus, the network has even more ways
to "work around" those faults and we would expect a minimal impact even for multiple
stuck-at-0 faults.

17

Figure 6 shows the effect of injected stuck-at-1 faults on a network solving the Assign-
ment Problem. The parameters used for this example are those listed in the second row of
Table 2. The solution shown in Figure 6a represents the global optimum. Thus, if the best
answer is derived under fault-free conditions, any fault can only decrease the performance.
Because the AP problem representation does not have the degeneracy like the TSP, even a
single stuck-at-1 fault precludes a convergence to the global solution. Figure 6b-f illustrates
how the multiple fault-locations marked by the shaded squares become part of the solutions
and how the network converges to accommodate these constraints.

We analyzed the network solutions in Figure 6b-f by using our conventional algorithm
and by taking the faults into account as additional constraints to the problem. Interestingly,
the network arrived at the same results, which means that it still found the new "global"
optimum under these fault-conditions. Thus, we could define a conditional performance
measure by viewing the faults as constraints to the problem and assessing the network
performance accordingly. Although we can see the obviously unavoidable performance
degradation in absolute terms, the conditional performance of the AP network is still optimal.
As with the TSP, stuck-at-0 faults preclude a particular solution and have no effect at all
on the AP unless the fault location coincides with an active unit that is part of the solution.
In this case, we have observed the same phenomenon that the network treats the fault as an
additional constraint and converges to the "best possible" solution.

Although the above examples provide some (qualitative) insight into the fault-tolerance
characteristics, it is still necessary to substantiate this impression by large-scale simulations
in order to obtain more rigorous results. We used the test-set of problem instances as
defined in the previous section and the same parameters that correspond to the results in
the second row of Tables 1 and 2. Only these parameter values were used for the TSP
because we regard the consistent convergence to a valid solution in the fault-free case as
a prerequisite for any fault-injection experiments. Figure 7 shows the results for different
problem sizes. The results confirm our conjecture that stuck-at-0 faults have no effect
for the AP and practically no effect for the TSP. In case of the TSP, the injected faults
"override" the random initialization and the network converges without or independent of
any initial bias to the same solution. Stuck-at-I faults result in an almost linear performance
degradation for the AP, while the redundancy of the TSP problem representation is reflected
in a relatively slower performance decrease as the number of faults increases. When the
number of stuck-at-I faults approaches the number of cities or elements, the performance for
both the TSP and the AP approaches zero as in Figure 7a, which corresponds to the random
average. This is because the randomly selected fault locations eventually predetermine a
random tour. Most importantly, none of our simulations failed to converge to a valid tour
because of one or more injected faults.

In another experiment, we studied the effect of connection faults on the performance of

an optimization network. Although the failure rate of a simple resistive connection is orders

18

a) Problem Size n=10 Cities or Elements

1.0 - A. A

0 .8 -

~0.6-A

o2 0.4- TSP: * AP:

CO 0.2 stuck-at-"0" faults
stuck-at-"1" faults

0.0 1 1I 1 1 1 I

0 1 2 3 4 5 6 7
No. of Injected Faults

b) Problem Size n=20 Cities or Elements

1.0- A A A A A A -

0.8

0.6

00.4- TSP: * AP:

VO 0.2 stuck-at-"0" faults
stuck-at-"l1" faults

0.0 1 1 1 1 1 I

0 2 4 6 8 10
No. of Injected Faults

c) Problem Size n=30 Cities or Elements

1.0 -6 A A A A A 6 A A a, A A

Z'0.8 - --------

0.6 A

.o 0.4 - TSP: * AP:

VO 0.2 -stuck-at-"0" faults
- -- stuck-at-"1" faults

0.0 1 1 1 1 I

0 2 4 6 8 10 12
No. of Injected Faults

Figure 7. Performance degradation of an ANN solving the Traveling Salesman Problem (TSP)
and the Assignment Problem (AF) after injections of stuck-faults for different problem
sizes. The values are averages over 10 different problem instances for each size with
additionally 10 different random initializations each for the TSP.

19

a) Problem Size n=10, D=50

1.0

>0.

o 0.6

C.2: -' 0.4 Wos

o 0.2

00
0.0 I I I I

0 10 20 30 40 50

Number of Connection Faults

b) Problem Size n=10, D=120

1.0
-Best

>_0.8 Average

o 0.6 Worst
C
.0 0.4

0 0.2
00

0.0 I I I

0 10 20 30 40 50

Number of Connection Faults

c) Percentage of Valid Solutions for a and b

100 --

-o 80- D =50Z -

- 120 -
> 60 -

40 -

0 k0
c \

0 10 20 30 40 50

Number of Connection Faults

Figure 8. Performance degradation of an ANN solving the Assignment Problem (AP) after multiple
connection failures (open connections). The values in a) and b) are the best, worst,
and average performance of 50 different problem instances and the values in c) indicate
how many out of the 50 runs for each fault-scenario converged to a valid solution.

20

of magnitude less than that of an operational amplifier, the large number of connections
(e.g. 2n3-2n 2 connections for an n-element AP compared to n2 neurons) increases the
overall probability of such a fault. The failure of a connection with the resistance R leads
either to a short circuit (R=0) or to an open connection (R = co). Because the failure rate
of a connection short circuit is far less than the rate of an open connection, we simulated
only the latter fault-type. In order to limit the number of required simulations we only
used a network solving the AP for this experiment, because this network exhibited the best
performance and greatest fault-tolerance in our previous studies.

Figure 8 shows the resulting performance degradation of an ANN solving a 10-element
AP for up to 50 simultaneous open connections. The parameters for the AP-network are
the same as in the previous fault-injection runs. The locations for the connection faults
were randomly selected. For each fault-scenario we ran 50 different problem instances and
Figure 8a-b shows the average as well as the worst and the best performance for the two
different values of the parameter D=50 and D=120. The parameter D is a factor multiplied
by the cost values according to Equation (7) and a large value for D enforces solutions with
better quality. This is reflected by Figure 8b which shows a better average quality as well
as a lower variation in the quality of the best and the worst solution compared to Figure
8a. This high variation in Figure 8a is again a reminder how much the results depend on
the chosen problem instance and that the study of a single instance as in [3] can lead to
grave misinterpretations.

Although the performance results suggest that a higher value for D would be desirable,
there is a tradeoff shown in Figure 8c. Surprisingly, while none of the "stuck-at" faults
led to an invalid solution, we do observe invalid solutions for some problem instances after
a certain number of open connections. Figure 8c shows the percentage of valid solutions
and it can be seen that a lower value for D tolerates more faults before the first case of an
invalid solution occurs. We have already seen this tradeoff between consistently valid and
high quality solutions in the fault-free cases of Section 4 and it is very interesting to observe
that the same effect plays an important role with respect to the fault-tolerance. Because an
invalid solution is the worst case and equivalent to a total system failure, a small value for
D is obviously preferable, especially since it does not affect the fault-free performance at
least for the cases shown in Figure 8a and b. However, for a value D>120 we could also
observe some invalid results in the fault-frec case. This shows that the "quality-validity
tradeoff" is a general phenomenon and that connection faults only increase the likelihood
of invalid solutions.

In summary, we have demonstrated that optimization networks exhibit a surprising de-
gree of fault-tolerance, which is achieved without the explicit use of redundant components.
Because the fault-tolerance characteristics are inseparable from the functional characteristics,
we can say that the fault-tolerance of the ANN is "built-in" or inherent. However, when we
make a statement about the fault-tolerance, we implicitly assume a failure condition or fail-

21

ure criterion of the system, which is the threshold below which it can no longer perform its
function according to the specification. For example, consider the AP-network that always
generates the global optimum under fault-free conditions. If we specify this as the only
acceptable performance level, than any stuck-at-i fault that causes the network to generate
a good but suboptimal answer is not acceptable and, with respect to this fault-type, the
network is not fault-tolerant at all. On the other hand, if we specify a solution quality of 0.8
as the acceptable performance threshold, then an AP-network of size n=30 can tolerate (on
the average) 5 stuck-at-1 faults and an even larger number of stuck-at-0 or connection faults.
Thus, the degree of fault-tolerance depends on our definition of acceptable performance.

The main reason that optimization networks are interesting from a fault-tolerance
perspective is that they exhibit a gracefulperforma "?e degradation and that they do not have
a critical component. Most conventional systems are either fully operational or break down
completely if a single fault occurs in a critical component or subsystem. Furthermore, most
neural networks have critical components and are therefore not truly fault-tolerant. Consider,
for example, a feedforward (backpropagation) network that is trained as an autopilot to
control the altitude of an aircraft and has a single neuron in its output layer whose analog
value represents the control variable. While this network might tolerate multiple connection
faults or faults of its hidden units, a single stuck-at-0 or stuck-at-I fault at the output neuron
would lead to a total system failure. Because of the critical component, such a network is,

at least in the strong sense of the definition, not fault-tolerant at all.

The above discussion suggests an application domain for optimization networks, where
it is not necessarily important to generate the best possible solution to an optimization
problem, but where a "reasonably" good answer has to be obtained fast and reliably. In the
next section we present an example of such an application with the network performing a
critical real-time task as a component of a fault-tolerant multiprocessor system.

6. Application of an ANN for the Task Allocation
in a Distributed Processing System
In the following we will investigate the application of an optimization network in the

context of a distributed processing system that operates under hard real-time constraints
and has to meet very high reliability requirements. An example of such a system is the
Software-Implemented Fault-Tolerance (SIFT) computer used by NASA as an experimental
vehicle for fault-tolerant systems research [161. The SIFT architecture can accommodate up
to eight processors in a fully distributed configuration with a point-to-point communication
link between every pair of processors. It can be used, for example, to execute real-time
flight control tasks as part of an aircraft control system. Because the system operates
in a distributed fashion, each processor executes a certain number of tasks according to a
predetermined task-to-processor allocation table. The architecture achieves an extreme fault-

22

tolerance by is capability to detect and to isolate possible hardware faults. The isolation of
a defective processor requires a reconfiguration of the system and a reallocation of all tasks
among the remaining processors. Thus, it is not the initial task allocation, but the reallocation
of tasks after a processor failure, that is time-critical and has to be performed by a highly
reliable mechanism. The use of look-up tables for the reallocation has the disadvantage
that the number of combinations of tasks and processors is very large for even moderately
sized systems [2] and grows exponentially after multiple processor failures. Although it
is possible to use conventional algorithms to solve the problem, these methods are often
computationally too expensive because of the hard real-time constraints and require an
undesirable overhead because the algorithms have to be executed in a distributed environment
without any hierarchical control.

Since finding the best allocation of tasks among the processors can be formulated as
a constrained optimization problem, we will demonstrate how an optimization network
can be used to solve this problem. The distributed system considered here resembles a
simplified version of the SIFT computer and is based on a model described in [2], in which
a conventional heuristic algorithm is used to solve this task allocation problem. We will
later use this algorithm as a benchmark to assess the ANN-performance. The system has to
execute n tasks and consists of m identical processors. Each task is replicated into r clones
that are executed by different processors and submitted to a majority voter in order to detect
and to mask possible hardware failures. Assuming periodic real-time tasks for a typical
flight control system, the number of instructions per execution of task j, the frequency of
execution and the execution rate of the processor determine the load that a certain task
places on a processor, which is called the utilization zj of task j. A particular allocation
can be described by a variable Vii with Vij=l if task j is scheduled on processor i and
Vij=O otherwise. Then the variable pi = zjVij represents the overall load or utilization

3
of processor i under the allocation Vij.

The task allocation has to observe the constraint that each task must be executed by
exactly r different processors in order to allow a majority vote. Additionally, the allocation
should be done in a way that achieves at least an approximate load balancing among the
processors. A load balancing in a distributed processing system is obviously desirable and
Bannister and Trivedi [2] discuss several reasons why an imbalance potentially decreases
the reliability of the system. It can be shown [2] that minimizing the sum of the squared
processor utilizations Ep? also minimizes the statistical variance of the pi, which is a

direct measure of the imbalance. We further assume that there are enough processors to
accommodate a (balanced) assignment without capacity or scheduling violations.

The task allocation problem (TAP) is represented by an optimization network consisting
of a two dimensional array of mxn neurons or elements, in which the output Vij of an
element is bounded between 0 and 1 and corresponds to the "hypothesis" that task j is

23

1 4=11 i: J 1 '1 1

4E assigned 3..:. 5 J 2t: i 2EZZ J
5s tasks 4 6 3 3
7r1 70 80 5E 6rE....
80 s o 9 6 70
9 10 101 - 9 10E J

load:
0.33 0.31 0.40 0.36 0.33

z processors 4

task utilization -- o-
1 , 0.071 task
2[ZZ 0.071 processor1 2 3 4 5 6 7 8 9 10
31 0.094 1 1 1 0 1 1 0 0 1 0
4E1Z 0.045 1 0 1 0

5 ~~~0.0572 1011001101
6E~2 0.085 3..J 0 0 11 10 11 1

7[_ ___] 0(.013
8M0.015 4 011 01 10 01 0

9I". 0.05810[0.070 5 01 1 0 0 1 1 0 0 1

Cost-Values Optimization Network Output-Matrix

Figure 9. Example of an allocation of tasks to processors generated by an optimization network.
Note that each task has to be executed by exactly three different processor while an
approximate load balancing of the processors should be achieved.

assigned to processor i. Figure 9 illustrates this problem representation for an example in
which 10 triplicated tasks are allocated to 5 processors. In order to map the task allocation
problem onto the network, it has to be expressed as a function whose minima correspond
to (local) solutions of the problem. With the above definitions, we can define the following
energy function

A -n2 B m n +Dm n

ETAP= (m Aj-r (16)
2 _ i I-vj jij=1 i=1 i=1 j=1 i=1 (j=1

The first term in (16) has a minimum if the constraint is met (i.e. each task is executed by
exactly r processors), the second term forces the outputs to converge to either 0 or 1, and
the third term represents the cost-function to be minimized. Mapping (16) onto the energy

24

function (6) yields the following values values for the interconnections and the external
current

Tij,ik = -A,k + B6iljk - Dzjzk6il

Iij = Ar - B
(17)

and the equations of motion

C --- A Vj +BVsjdt - j
B (18)

-Dzj E zkk + Ar -2
k

We used the parameter values A=75, B=5, and D=350 as well as A=25 and us--0 for the

transfer function (1). Although there are only three parameters, we use D as the third

parameter because we have previously associated D with the cost function of the problem.
Our simulations are performed for different data-sets with task utilizations zj randomly
generated from a uniform distribution between 0.01 and 0.1. Because of the quadratic cost
function in (16), the cost values zj are part of the interconnections while the external current
is constant. Thus, this problem is similar to the TSP and requires a random initialization to
overcome the unstable equilibrium point at uij--O. "' used the initial values Vij--0.5+6 with
small, uniform noise _10-7<6510 -7 . The equations of motions (18) were solved by Euler's
method with a stepsize At=2x 10- 5 and required an average of 5000 iterations to converge.

At this point, we can simulate the network and successfully "solve" the TAP as shown in
Figure 9 with a performance that is comparable to the TSP-network, but this is not the actual
task in this application. What is required is a reallocation of tasks after a processor failure.
Therefore, the network has to be provided with the information of which processor has
failed. Furthermore, it has to implement this information as an additional constraint before
solving the problem. For example, the unavailability of a processor k can be represented by

enforcing Vkj--O for all j, that is, no tasks can be assigned to processor k. This additional
constraint could be implemented either by external currents of sufficient strength to "shut
down" all neurons in row k, or by switches connecting the outputs of all neurons in row
k to "0" (ground potential). While the latter method seems to be somewhat crude, it has
actually the advantage that a possible stuck-at-i hardware fault of a neuron in that row
is "overwritten" by the external switch. Producing this "short circuit" at the outputs is
equivalent to our stuck-at-0 fault-injections in the last Section. There we have shown that
the network indeed treats these "faults" as additional constraints to the optimization problem.
Figure 10 illustrates the process of reallocation after a processor failure by using the same

example shown in Figure 9.

The network is obviously a critical component of the system because a network failure

would prevent the reconfiguration of the system after a processor failure, which leads to a

25

1= 1=

2 f assigned 3 1 2
4 f tasks 4 2 : : 3 .
7 6 4 6
8O 70 5E 70
9c=80 9 8D

10 = 9 1 10 10

0oad3 0.44 0.47 0.41

A processors3 'e 4 5

task utilization1 ti:i! i i:!:i! 0.071 task - p

2 '; 0.071 processor 12 3 4 5 6 7 8 9 10
31 0.094 1 1 1 0 1 0 1 1 1 1 1

4 0.045 /4 0.057 2 10 0 0 0 0 0-0 0 0 06!: !!!iii:: ii!! i!!! 0"085 L-,J 7 3 1 0 1 1 1 1 1 1 1 0 /7M 0.013
80] 0.015 4 1 1 1 1 1 0 0 0 1 1

9 lJ 0.058 5 0 1 1 0 1 1 1 1 0 110L~ 0.070 P R

Cost-Values Optimization Network Output-Matrix

Figure 10. Example of a reallocation of tasks after a processor failure. The optimization
network generates new allocations by observing the constraints and by
approximately balancing the load of the processors.

total system failure. Thus, the fault-tolerance of the ANN becomes a crucial characteristic.
We tested the fault-tolerance again by simulating stuck-at-0 and stuck-at-1 faults in randomly
selected locations. Figure 11 illustrates the operation and the convergence of the network
for the example of a system with m=7 processors and n=14 tasks where each task has to be
executed by 3 different processors (r=3). Figure 1 la shows the initialization of the (fault-
free) network for a scenario in which processor 4 has failed, which is reflected by an output
value of zero for all neurons in row 4. Figure 1 lb indicates the result after convergence
with task 2, 3, and 6 assigned to processor 1, task 3, 5, and 7 assigned to processor 2, etc.
The load balancing performance of the ANN is also illustrated in Figure 1 lb which lists
the processor utilizations resulting from the ANN solution in comparison with a simple,
heuristic reference algorithm [2]. As can be seen from the cost values listed at the bottom,
which are the sum of the squares of the processor utilizations, the ANN is outperformed

26

1 2 3 4 5 6 7 8 9 1 t 12 13 1 41234 5 6 7 8 9 111 121314 ANN Refsr
1 *EEE EEEE EU MEE 1• • • " l.. .. 0.33110.3306
2 0 NNEU EEMEMENEE 2 U • OWES E no 8.35170.3386
3 *.E MEE.E ,EE ==EE 3oll" "l 'i. . .. 33890.3306
4 4 e.8886 8.688e

5 a a U* *E ** **E *ME 5 *** * . . l e.34 8.3273
6 on N * a U E E U E E E E 6 ... No • E iE 0.3200 0.3273
7 E N 8l f l E m 0 0 S 0 U 7 6 . . .• . . . 0.291210.3273

a) b) Cost: 6.6515 T86493

c)d)
1 2 3 4 5 6 7 8 9 10 1112 13 14 1 2 3 4 5 6 7 8 9 1 11 12 13 14 ANN Refer

1 a a • U• •E iEM f l 1O M I -ON - *" . l .3112 0.3306
2 MOB *EUEE • EU 2 -ON. inf . 0. • .2772 0.3306
3 *E• E SflUn fl•• 0 3 * .*. ME*NM N 0.3598 0.3306
4 4 0.8608 8.006

5 x M a = a a E a a. 5 oi n O O • N 0.3007 8.3273
6 *EEUM.EE E Eggs 6- "i ENo" -l" 0.29890.3273
7 E E , , U E N 8 0 E U , U , 7NM .fa . ll 0.f8346716.3273

Cost: 6.657018.6493

Figure 11. Illustration of the operation and convergence of a network generating a task
allocation after the failure of processor 4 (m=7, n=14, r=3): a) initialization of
the network (no faults), b) solution after convergence with resulting processor
utilizations in comparison to the reference algorithm, c) initialization (five
stuck-at-1 and three stuck-at-0 faults injected into the network), d) solution
after convergence under the presence of the injected faults.

by the algorithm, although the difference of the values is only of the order of one percent.
However, as we stated earlier, an approximate load balancing is sufficient in this case as
long as the solution can be obtained fast and reliably.

The latter requirement is illustrated in Figure 1 ic. It shows the initialization of the
network for the same scenario, but now with eight faults simultaneously present in the
network. The fault locations of five stuck-at-1 and three stuck-at-0 faults are clearly visible
after the initialization. Figure l1 d shows the results after convergence and we can observe
the same phenomenon that the faults do not impair the convergence, but act as additional
constraints of the problem. According to the cost value in Figure 1ld, the performance is
only slightly worse than in the fault-free case.

Since the performance of the ANN varies considerably for different random initializa-
tions and different input data, it is necessary to evaluate the average performance over a
sufficient number of problem instances in order to obtain a statistically relevant assessment.
We simulated a system with m=8 processors and n=24 triplicated tasks (r=3), which requires
a network of 192 neurons. Seven different test-sets of random task utilizations were gener-
ated. The network was simulated with seven different initializations for each test set. The
solution quality q was used to assess the performance where values for c0Pt were obtained
from the heuristic algorithm in [2]. Figure 12 demonstrates the performance degradation

27

a) stuck-at-0 faults b) stuck-at-1 faults

7 proc. 8 proc.
= 0.95 - 8 proc. 0.95 8

ZN

a 0.90 .. 0.90

.o 0.85 ', ,. ,, 0.85

.0.80 0.80.08 6"proc. 6 proc. 7 proc.

0 .75 I I I I I I I 0 .7 5 1 . I 1 - - -I I
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

No. of Injected Faults No. of Injected Faults

Figure 12. Performance degradation of the ANN allocating n=24 triplicated tasks
(r=-3) to m=8, 7, and 6 processors.

for up to 8 injected stuck-at-0 or stuck-at-i faults, respectively. The number of processors
refers to the remaining number of available processors in the system. For example, if the
distributed system consists initially of 8 processors, then m=7 refers to the operation of the
network after a failure of one processor with the neurons in the corresponding row switched
to zero. Note that the solution quality in Figure 12 is plotted in the small range from 0.75
to 1.0, which magnifies the variations. As expected, the performance is very similar to the
TSP because both use a quadratic cost function.

The results in Figure 12 confirm the qualitative observation in Figure 11 that the ANN
exhibits an extreme fault-tolerance compared to conventional systems. Since the faults are
randomly located and act as additional constraints of the problem, it is possible that one
or more faults accidently "dictate" a better solution than the network would have found
without faults. This explains the occasional performance increase after fault-injection and

the nonmonotonic characteristic of the performance degradation. Of course, this is only
possible because of the suboptimal performance of the ANN in the fault-free case. It is
also important to note that none of the simulations converged to an invalid solution or to
a solution that violates the capacity constraint pi<l, although the latter was not explicitly
enforced. An event that would lead to an invalid solution can only occur if there are more
than r stuck-at-1 faults in the same column, thus assigning a task to more than r processors
and violating the constraints. If the faults occur at random locations and if the failure rate
of a stuck-at-i fault is known for a particular hardware implementation, then this scenario
can be used to estimate an upper bound for the reliability of the ANN.

7. Conclusion
The fault-tolerance of conventional systems is a carefully calculated design goal that

requires some form of hardware- or software-redundancy, which increases the complexity

28

of the system. That is, it is always possible to build a simpler system without the
redundancy, and this system has the same performance under fault-free conditions as the
fault-tolerant system. In contrast, the fault-tolerance of optimization networks is inseparable
from their functional characteristics and is neither planned nor can it be removed. We
have demonstrated this "inherent" fault-tolerance in simulations and we have shown that the
injected faults are treated by the network as additional constraints to the problem. While
conventional systems often break down completely after a single fault, the network exhibits
a graceful performance degradation even after multiple injected faults. This characteristic
can be exploited and a fault-tolerant neural network integrated on a single analog VLSI
chip might perform a critical task that would otherwise require a redundant microprocessor
system with specially tested software.

As an example for a promising application, we used the neural network as a critical
component of a fault-tolerant, distributed processing system. The failure of a processor
requires a reconfiguration of the system and a reallocation of all tasks among the remaining
processors. This task allocation has to observe certain constraints and should at least
approximately balance the load of the processors. We showed how a neural network can
solve this problem and demonstrated the robustness of the network by injecting simulated
faults. Our results indicate that the network can indeed perform this task reliably and that
even multiple faults do not impair the ability of the network to generate an answer with
only slightly degraded performance.

In summary, we think that there exist applications for the type of neural network
described in this paper that can take advantage of the speed, low weight, low power
consumption, and fault-tolerance of future hardware implementations. However, in most
cases, the actual performance of the network does not reach the performance of the best
available, conventional optimization algorithm. Thus, the neural network approach is best
suited to certain real-time applications that do aot necessarily require the absolute best
answer, but where it is necessary to generate an approximate answer fast and reliably.
The characteristic of a graceful performance degradation without additional redundancy is
especially interesting for applications such as long-term, unmanned space missions, where
component failures have to be expected but no repair or maintenance can be provided.

29

References

[1] Anderson, J. A. Cognitive and psychological computation with neural models. IEEE
Transactions on Systems, Man, and Cybernetics SMC-13, 5 (Sep-Oct 1983), 799-815.

[2] Bannister, J. A., and Trivedi, K. S. Task allocation in fault-tolerant distributed systems.
In Hard Real-Time Systems (Tutorial), J. A. Stankovic and K. Ramamritham, Eds. IEEE

Computer Society Press, 1988, pp. 256-272.

[3] Belfore II, L. A., and Johnson, B. W. The fault-tolerance of neural networks. The

International Journal of Neural Networks - Research and Applications 1, 1 (Jan 1989),
24-41.

[4] Brandt, R. D., Wang, Y., Laub, A. J., and Mitra, S. K. Alternative networks for
solving the traveling salesman problem and the list-matching problem. In Proceedings
of the IEEE International Conference on Neural Networks, San Diego, CA (July 1988),
pp. 11-333-340.

[5] Cohen, M. A., and Grossberg, S. Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Transactions on Systems,

Man, and Cybernetics SMC-13, 5 (Sep/Oct 1983), 815-826.

[6] Garey, M. R., and Johnson, D. S. Computers and Intractability. W. H. Freeman, 1979.

[7] Grossberg, S. Nonlinear neural networks: Principles, mechanisms, and architectures.
Neural Networks 1, 1 (1988), 17-61.

[8] Hedge, S., Sweet, J., and Levy, W. Determination of parameters in a Hopfield/Tank
computational network. In Proceedings of the IEEE International Conference on Neural
Networks, San Diego, CA (July 1988), pp. 11-291-298.

[9] Hinton, G. E., and Sejnowski, T. J. Learning and relearning in Boltzmann machines. In
Parallel Distributed Processing, Vol. 1, D. E. Rummelhart and J. L. McClelland, Eds.

Bradford Books/MIT Press, 1986, ch. 7, pp. 282-317.

[10] Hinton, G. E., and Shallice, T. Lesioning a connectionist network: Investigations
of acquired dyslexia. Technical Report CRG-TR-89-3, Dept. of Computer Science,
University of Toronto, May 1989.

[11] Hopfield, J. J. Neurons with graded response have collective computational properties
like those of two-state neurons. Proc. Natl. Acad. Sci. USA, Biophysics 81 (May 1984),

3088-3092.

[121 Hopfield, J. J., and Tank, D. W. "Neural" computation of decisions in optimization

problems. Biological Cybernetics 52 (1985), 141-152.

[13] Hutchinson, J. M., and Koch, C. Simple analog and hybrid networks for surface
interpolation. In Neural Networks for Computing, J. S. Denker, Ed. American Institute
of Physics, 1986, pp. 235-239.

30

[14] Lin, S., and Kernigham, B. W. An effective heuristic algorithm for the traveling
salesman problem. Operations Research 21 (1973), 498-516.

[15] Marcus, C. M., and Westervelt, R. M. Dynamics of analog neural networks with time
delay. In Advances in Neural Information Processing Systems. Morgan Kauffman, 1989.

[16] Palumbo, D. L., and Butler, R. W. A performance evaluation of the software-
implemented fault-tolerance computer. J. Guidance 9, 2 (March-April 1986), 175-180.

[17] Petsche, T., and Dickinson, B. W. Trellis codes, receptive fields, and fault tolerant, self-
repairing neural networks. IEEE Transactions on Neural Networks 1, 2 (June 1990),
154-166.

[18] Protzel, P. W. Comparative performance measure for neural networks solving
optimization problems. In Proceedings of the International Joint Conference on Neural
Networks IJCNN-90, Washington, D.C. (January 1990), pp. 11-523-526.

[191 Protzel, P. W., Palumbo, D. L., and Arias, M. K. Fault-tolerance of a neural network
solving the traveling salesman problem. ICASE Report No. 89-12/ NASA Contractor
Report 181798, ICASE / NASA Langley Research Center, Feb 1989.

[201 Sejnowski, T. J., and Rosenberg, C. R. NETtalk: a parallel network that learns to read
aloud. Technical Report JHU/EECS-86/01, John Hopkins University, 1986.

[21] Smith, M. J., and Portmann, C. L. Practical design and analysis of a simple "neural"
optimization circuit. IEEE Transactions on Circuits and Systems 36, 1 (January 1989),
42-50.

[22] Syslo, M. M., Deo, N., and Kowalik, J. S. Discrete Optimization Algorithms. Prentice
Hall, Inc., Englewood Cliffs, NJ, 1983.

[23] Tagliarini, G. A., and Page, E. W. A neural network solution to the concentrator
assignment problem. In IEEE Conference on "Neural Information Processing Systems
- Natural and Synthetic", Denver, CO (November 1987).

[24] Tank, D. W., and Hopfield, J. J. Simple "neural" optimization networks: An A/D
converter, signal decision circuit, and a linear programming ciruit. IEEE Transactions
on Circuits and Systems CAS-33, 5 (May 1986), 533-541.

[25] Van den Bout, D. E., and Miller, T. K. A traveling salesman objective function that
works. In Proceedings of the IEEE International Conference on Neural Networks, San

Diego, CA (July 1988), pp. 11-299-304.
[26] Wilson, G. V., and Pawley, G. S. On the stability of the traveling salesman problem

algorithm of Hopfield and Tank. Biological Cybernetics 58 (1988), 63-70.

31

NASA Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR- 187582
ICASE Report No. 91-45

4. Title and Subtitle 5. Report Date

PERFORMANCE AND FAULT-TOLERANCE OF NEURAL NETWORKS June 1991
FOR OPTIMIZATION 6. Performing Organization Code

7. Authorls) 8. Performing Organization Report No.

Peter W. Protzel 91-45
Daniel L. PalumboMichal K. rras10. Work Unit No.
Michael K. Arras

9. Performing Organization Name and Address 505-90-52-01

Institute for Computer Applications in Science 11. Contract or Grant No.

and Engineering NAS1-18605
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes

Langley Technical Monitor: Submitted to IEEE Transactions
Michael F. Card on Neural Networks

Final Report
16. Abstract One of the key benefits of future hardware implementations of certain Artificial Neural

Networks (ANNs) is their apparently "built-in" fault-tolerance, which makes them potential
candidates for critical tasks with high reliability requirements. This paper investigates the
fault-tolerance characteristics of time-continuous, recurrent ANNs that can be used to solve
optimization problems. The performance of these networks is first illustrated by using well-
known model problems like the Traveling Salesman Problem and the Assignment Problem.
The ANNs are then subjected to up to 13 simultaneous "stuck-at-l" or "stuck-at-0" faults
for network sizes of up to 900 "neurons." The effect of these faults on the performance is
demonstrated and the cause for the observed fault-tolerance is discussed. An application is
presented in which a network performs a critical task for a real-time distributed processing
system by generating new task allocations during the reconfiguration of the system. The
performance degradation of the ANN under the presence of faults is investigated by large-
scale simulations and the potential benefits of delegating a critical task to a fault-tolerant
network are discussed.

17 Key Words (Suggested by Author(s)) 18. Distribution Statement
62 - Computer Systems

Neural Networks, Fault-Tolerance, 63 - Cybernetics

Optimization

_ Unclassified - Unlimited

19 Security Classif (of this report) 20 Security Classif lof this page) 21 No. of pages 22 Price

Unclassified Unclassified 33 A03

NASA FORM JU OCT 86

NASA-LAngley. 1991

